1 电路设计原理框图
该电路的基本原理框图。它主要由晶体振荡器为两个可编程逻辑器件(isp1016E)提供4.096MHz的频率信号,并经分频产生1 kHz信号,然后将其作为计数器的时钟触发。三级开关信号(即系统中的解保信号)依次加到四光电耦合器上,其中第一级开关信号用于驱动可编程逻辑器件,其输出信号经过驱动器转换后,可将原来输出端的高电平信号转换为低电平信号,以解除系统第一级保险。
第二级开关信号经光耦隔离后用于驱动另一个可编程逻辑器件,该信号经判断确认时序正确时,输出信号经驱动器可产生低电平信号,以解除系统第二级保险。
当第三级开关信号到来并确认当前的三级开关信号时序关系正常后,系统便通过产生特定频率和占空比的5 V TTL信号,以解除第三级保险,从而使系统进行高压充电,此时引信处于待爆状态。
当三级开关信号时序不正常时。以使特定频率信号输出端无输出,从而使引信绝火。
2 方案设计
传统数字电路中多由TTL和CMOS器件构成逻辑电路,这样的系统大多存在逻辑器件数目多,电路复杂,板块庞大等缺点。而可编程逻辑器件内部有大量的门电路(2000门)和触发器,通过编程可以连接成各种中小规模的数字电路。这样。寄存器、计数器、多路选择、译码器等电路都很容易通过编程实现。另外,也可以利用可编程逻辑器件配套软件中具备的宏单元库,来编程完成高性能系统所要求的复杂逻辑功能。
由于混合集成特定频率信号发生器的逻辑关系比较复杂,为此,本设计选用可编程逻辑器件来实现逻辑功能。以简化设计难度。这样,只要在计算机上输入数字电路原理图或用硬件描述语言描述数字电路,然后经过编译,并将编译后的数据文件下载到可编程逻辑器件上即可完成数字电路的设计,而且电路结构简单,器件少,成本低,设计方便,不容易损坏,同时可大大增加系统的可靠性、减少系统体积。